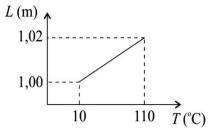


Exercícios Dilatação dos Sólidos

Questão 01 - (UNIRG TO) Uma chapa de cobre, utilizada em circuitos eletrônicos, tem 60 centímetros de comprimento por 40 centímetros de largura a 16° C. A área dessa chapa, quando exposta a uma temperatura de 66° C, é de (Dado: coeficiente de dilatação linear do cobre = 16×10^{-6} °C):

- a) 3,84 cm²;
- b) 2396,16 cm²;
- c) 2403,84 cm²;
- d) 2581,32 cm².

Questão 02 - (IFMT)

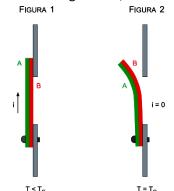


(Tirinha disponível em: http://portaldoprofessor.mec.gov.br.)

Considerando os aspectos visuais e verbais da tirinha, pode-se afirmar que:

- a) o primeiro personagem da tirinha não tem força suficiente para tirar a porca do parafuso.
- b) o diâmetro do parafuso é ligeiramente maior que o diâmetro da porca, o que inviabiliza que o primeiro personagem consiga arrancá-la.
- c) a porca, ao ser aquecida, sofre uma dilatação térmica linear que aumenta o seu diâmetro interno, o que possibilita ao segundo personagem tirá-la sem muitas dificuldades.
- d) ao aquecer, a porca sofre uma dilatação térmica superior à dilatação sofrida pelo parafuso e, com isso, tem o seu diâmetro interno elevado, facilitando a sua retirada pelo segundo personagem.
- e) ilustra perfeitamente o fenômeno da condução térmica.

Questão 03 - (UFPR) A dilatação térmica linear sofrida por um objeto em forma de barra feito de um dado material foi investigada por um estudante, que mediu o comprimento L da barra em função de sua temperatura T. Os dados foram dispostos no gráfico apresentado abaixo.


Com base nos dados obtidos nesse gráfico, determine o comprimento final L_f de uma barra feita do mesmo material que a barra utilizada para a obtenção do gráfico acima, tendo comprimento L_0 = 3,00 m em T_0 = 20 $^{\circ}$ C, após sofrer uma variação de temperatura de modo que sua temperatura final seja T_f = 70 $^{\circ}$ C.

Questão 04 - (FCM PB) Um ambiente a 20 $^{\circ}$ C contem uma haste metálica, 8 metros de comprimento, coeficiente de dilatação linear de 3,5 × 10 $^{-5}$ / $^{\circ}$ C. Quando colocado em outro ambiente, agora a 100 $^{\circ}$ C, varia de dimensões, qual a variação de comprimento da haste?

- a) 6×10^{-4} m
- b) $2,24 \times 10^{-2}$ m
- c) 5×10^4 m
- d) 3.2×10^{-5} m
- e) 3×10^{-4} m

@PROF.DEBORAHFRANCO

Questão 05 - (UEFS BA) Determinados aparelhos elétricos precisam ter seu funcionamento interrompido quando a temperatura atinge certo valor, chamada temperatura crítica (T_c). Para fazer esse controle, alguns aparelhos utilizam um dispositivo baseado na dilatação térmica desigual sofrida por metais diferentes. Ele interrompe a corrente elétrica (i) no aparelho quando a temperatura atinge um valor igual a T_c, conforme a figura.

Metais	Coeficientes de dilatação linear (10 ⁻⁶ °C ⁻¹)
aço	11
ferro	12
alumínio	24
zinco	64

Para que o dispositivo funcione como mostrado nas figuras 1 e 2, considerando os valores dos coeficientes de dilatação linear da tabela, os metais A e B da lâmina bimetálica representada podem ser, respectivamente,

- a) zinco e ferro.
- b) alumínio e ferro.
- c) zinco e alumínio.
- d) ferro e aço.
- e) aço e alumínio.

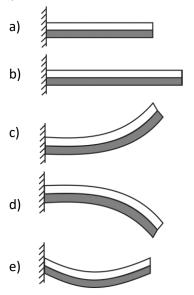
Questão 06 - (UDESC) Uma placa de alumínio com um furo circular no centro foi utilizada para testes de dilatação térmica. Em um dos testes realizados, inseriu-se no furo da placa um cilindro maciço de aço. À temperatura ambiente, o cilindro ficou preso à placa, ajustando-se perfeitamente ao furo, conforme ilustra a figura.

O valor do coeficiente de dilatação do alumínio é, aproximadamente, duas vezes o valor do coeficiente de dilatação térmica do aço. Aquecendo-se o conjunto a 200 ºC, é correto afirmar que:

- a) o cilindro de aço ficará ainda mais fixado à placa de alumínio, pois, o diâmetro do furo da placa diminuirá e o diâmetro do cilindro aumentará.
- b) o cilindro de aço soltar-se-á da placa de alumínio, pois, em decorrência do aumento de temperatura, o diâmetro do furo aumentará mais que o diâmetro do cilindro.
- c) não ocorrerá nenhuma mudança, pois, o conjunto foi submetido à mesma variação de temperatura.
- d) o cilindro soltar-se-á da placa porque sofrerá uma dilatação linear e, em função da conservação de massa, ocorrerá uma diminuição no diâmetro do cilindro.
- e) não é possível afirmar o que acontecerá, pois, as dimensões iniciais da placa e do cilindro são desconhecidas.

Questão 07 - (UERN) A tabela a seguir apresenta os coeficientes de dilatação linear de alguns metais:

Metais	Coeficiente de dilatação linear (°C ⁻¹)
ferro	12.10^{-6}
cobre	17 . 10 ⁻⁶
alumínio	22 . 10 ⁻⁶
zinco	26 . 10 ⁻⁶


Uma placa de metal de área 1 m² a 20°C é aquecida até atingir 100°C apresentando uma variação de 35,2 cm² em sua área. O metal que constitui essa placa é o

- a) ferro.
- b) cobre.
- c) zinco.
- d) alumínio.

Questão 08 - (FUVEST SP) Uma lâmina bimetálica de bronze e ferro, na temperatura ambiente, é fixada por uma de suas extremidades, como visto na figura abaixo.

Nessa situação, a lâmina está plana e horizontal. A seguir, ela é aquecida por uma chama de gás. Após algum tempo de aquecimento, a forma assumida pela lâmina será mais adequadamente representada pela figura:

Note e adote:

O coeficiente de dilatação térmica linear do ferro é 1,2 x 10^{-5} ${}^{\circ}\text{C}^{-1}$.

O coeficiente de dilatação térmica linear do bronze é 1,8 x 10^{-5} ${}^{\circ}\text{C}^{-1}$.

Após o aquecimento, a temperatura da lâmina é uniforme.

GABARITO:

1) Gab: C

2) Gab: D

3) Gab: 3,03m

4) Gab: B

5) Gab: E

6) Gab: B

7) Gab: D

8) Gab: D